高级检索

    基于随机森林的压力传感器校准技术研究

    Random Forest-Based Calibration Technique for Pressure Sensors

    • 摘要: 压力传感器作为现代传感技术的核心组件之一,在工业自动化、医疗监测和智能装备等领域具有重要应用价值,但其输出信号易受环境温度漂移影响的问题严重制约了工业场景下的测量精度。本研究提出一种新的温度补偿算法:基于随机森林的温度补偿算法,引入温度与传感器输出电压的交互项作为随机森林的特征输入,从而更精准地解耦温度对压力测量结果的影响。同时,使用网格搜索对超参数进行寻优,实现模型预测误差的最小化控制。实验结果表明:经随机森林校准后的压力传感器全量程最大相对误差为0.13%FS,较基于麻雀搜索算法优化的支持向量回归(SSA-SVR)模型(0.2501%FS)和粒子群优化的BP神经网络(PSO-BP)模型(0.44%FS)分别提升48%和70.5%。

       

      Abstract: Pressure sensors, as one of the core components in modern sensing technology, hold significant application value in industrial automation, medical monitoring, and intelligent equipment. However, their output signals are susceptible to environmental temperature drift, which severely limits measurement accuracy in industrial scenarios. This study proposes a novel temperature compensation algorithm: a Random Forest-based temperature compensation method. By introducing interaction terms between temperature and sensor output voltage as feature inputs for the Random Forest, the algorithm enables more precise decoupling of temperature effects on pressure measurement results. Simultaneously, grid search is employed for hyperparameter optimization to minimize model prediction errors. Experimental results demonstrate that the maximum full-scale relative error of the pressure sensor calibrated by the Random Forest algorithm is 0.13% FS, representing improvements of 48% and 70.5% compared to the Sparrow Search Algorithm-optimized Support Vector Regression (SSA-SVR) model (0.2501% FS) and Particle Swarm Optimization-based BP Neural Network (PSO-BP) model (0.44% FS), respectively.

       

    /

    返回文章
    返回