高级检索

    车用高算力芯片散热挑战及研究进展

    Heat Dissipation Challenge and Research Progress of Automotive High-performance Computing Chip

    • 摘要: 随着汽车智能化与自动驾驶技术的快速发展,车用高算力芯片的算力需求呈指数级增长,未来L4/L5级自动驾驶芯片的算力将超过1000 TOPS。然而,高算力必将伴随着高功耗散热的难题,且电动汽车轻量化设计导致散热空间有限,散热系统需耐受高温、高原、高寒的极限环境和复杂的车规级振动工况。因此,封装热管理技术将成为车用高算力芯片设计中的核心挑战之一。文中从封装的角度综述当前车用高算力芯片在高效率导热和均热方面的热管理方案,重点分析了微通道散热技术与微通道均热技术的原理、性能与适用场景,为车用高算力芯片热管理提供参考。

       

      Abstract: With the rapid advancement of automotive intelligence and autonomous driving technologies, the computing power needed for automotive high-performance computing chips is increasing exponentially. In the future, the computing power of L4/L5-level autonomous driving chips will surpass 1000 TOPS. Nonetheless, greater computing power will inevitably result in significant power consumption and heat dissipation issues. Furthermore, the lightweight design of electric vehicles brings about restricted heat dissipation capacity, necessitating that the heat dissipation system withstands extreme conditions of elevated temperature, high altitude, and severe cold, in addition to intricate vehicle-grade vibration conditions. Consequently, packaging thermal management technology emerges as a principal problem in the creation of high-performance computing chips for the electric vehicle sector. The current thermal management solutions for automotive high-performance computing chips are examined from a packaging standpoint, with a focus on the principles, performance, and applicable scenarios of microchannel cooling and microchannel vapor chamber technology. It serves as a reference for the thermal management of electric vehicles’ high-performance computing chips.

       

    /

    返回文章
    返回